
Skip to main content

Playwright for PythonDocsAPIPython	Python
	Node.js
	Java
	.NET

Community

Search

	API reference
	Playwright
	Classes
	APIRequest
	APIRequestContext
	APIResponse
	Accessibility
	Browser
	BrowserContext
	BrowserType
	CDPSession
	ConsoleMessage
	Dialog
	Download
	ElementHandle
	Error
	FileChooser
	Frame
	FrameLocator
	JSHandle
	Keyboard
	Locator
	Mouse
	Page
	Request
	Response
	Route
	Selectors
	TimeoutError
	Touchscreen
	Tracing
	Video
	WebError
	WebSocket
	Worker

	Assertions
	APIResponseAssertions
	LocatorAssertions
	PageAssertions

	
	API reference

	Classes

	Page

On this page
Page
	extends: EventEmitter

Page provides methods to interact with a single tab in a Browser, or an extension background page in Chromium. One Browser instance might have multiple Page instances.

This example creates a page, navigates it to a URL, and then saves a screenshot:

	Sync
	Async

from playwright.sync_api import sync_playwright, Playwright

def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = webkit.launch()
 context = browser.new_context()
 page = context.new_page()
 page.goto("https://example.com")
 page.screenshot(path="screenshot.png")
 browser.close()

with sync_playwright() as playwright:
 run(playwright)

import asyncio
from playwright.async_api import async_playwright, Playwright

async def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = await webkit.launch()
 context = await browser.new_context()
 page = await context.new_page()
 await page.goto("https://example.com")
 await page.screenshot(path="screenshot.png")
 await browser.close()

async def main():
 async with async_playwright() as playwright:
 await run(playwright)
asyncio.run(main())

The Page class emits various events (described below) which can be handled using any of Node's native EventEmitter methods, such as on, once or removeListener.

This example logs a message for a single page load event:

page.once("load", lambda: print("page loaded!"))

To unsubscribe from events use the removeListener method:

def log_request(intercepted_request):
 print("a request was made:", intercepted_request.url)
page.on("request", log_request)
sometime later...
page.remove_listener("request", log_request)

Methods

add_init_script

Added in: v1.8
page.add_init_script
Adds a script which would be evaluated in one of the following scenarios:

	Whenever the page is navigated.
	Whenever the child frame is attached or navigated. In this case, the script is evaluated in the context of the newly attached frame.

The script is evaluated after the document was created but before any of its scripts were run. This is useful to amend the JavaScript environment, e.g. to seed Math.random.

Usage

An example of overriding Math.random before the page loads:

// preload.js
Math.random = () => 42;

	Sync
	Async

in your playwright script, assuming the preload.js file is in same directory
page.add_init_script(path="./preload.js")

in your playwright script, assuming the preload.js file is in same directory
await page.add_init_script(path="./preload.js")

note
The order of evaluation of multiple scripts installed via browser_context.add_init_script() and page.add_init_script() is not defined.

Arguments

	
path Union[str, pathlib.Path] (optional)#

Path to the JavaScript file. If path is a relative path, then it is resolved relative to the current working directory. Optional.

	
script str (optional)#

Script to be evaluated in all pages in the browser context. Optional.

Returns

	NoneType#

add_locator_handler

Added in: v1.42
page.add_locator_handler
When testing a web page, sometimes unexpected overlays like a coookie consent dialog appear and block actions you want to automate, e.g. clicking a button. These overlays don't always show up in the same way or at the same time, making them tricky to handle in automated tests.

This method lets you set up a special function, called a handler, that activates when it detects that overlay is visible. The handler's job is to remove the overlay, allowing your test to continue as if the overlay wasn't there.

Things to keep in mind:

	When an overlay is shown predictably, we recommend explicitly waiting for it in your test and dismissing it as a part of your normal test flow, instead of using page.add_locator_handler().
	Playwright checks for the overlay every time before executing or retrying an action that requires an actionability check, or before performing an auto-waiting assertion check. When overlay is visible, Playwright calls the handler first, and then proceeds with the action/assertion.
	The execution time of the handler counts towards the timeout of the action/assertion that executed the handler. If your handler takes too long, it might cause timeouts.
	You can register multiple handlers. However, only a single handler will be running at a time. Make sure the actions within a handler don't depend on another handler.

warning
Running the handler will alter your page state mid-test. For example it will change the currently focused element and move the mouse. Make sure that actions that run after the handler are self-contained and do not rely on the focus and mouse state being unchanged.

 For example, consider a test that calls locator.focus() followed by keyboard.press(). If your handler clicks a button between these two actions, the focused element most likely will be wrong, and key press will happen on the unexpected element. Use locator.press() instead to avoid this problem.

 Another example is a series of mouse actions, where mouse.move() is followed by mouse.down(). Again, when the handler runs between these two actions, the mouse position will be wrong during the mouse down. Prefer self-contained actions like locator.click() that do not rely on the state being unchanged by a handler.

Usage

An example that closes a cookie consent dialog when it appears:

	Sync
	Async

Setup the handler.
def handler():
 page.get_by_role("button", name="Reject all cookies").click()
page.add_locator_handler(page.get_by_role("button", name="Accept all cookies"), handler)

Write the test as usual.
page.goto("https://example.com")
page.get_by_role("button", name="Start here").click()

Setup the handler.
def handler():
 await page.get_by_role("button", name="Reject all cookies").click()
await page.add_locator_handler(page.get_by_role("button", name="Accept all cookies"), handler)

Write the test as usual.
await page.goto("https://example.com")
await page.get_by_role("button", name="Start here").click()

An example that skips the "Confirm your security details" page when it is shown:

	Sync
	Async

Setup the handler.
def handler():
 page.get_by_role("button", name="Remind me later").click()
page.add_locator_handler(page.get_by_text("Confirm your security details"), handler)

Write the test as usual.
page.goto("https://example.com")
page.get_by_role("button", name="Start here").click()

Setup the handler.
def handler():
 await page.get_by_role("button", name="Remind me later").click()
await page.add_locator_handler(page.get_by_text("Confirm your security details"), handler)

Write the test as usual.
await page.goto("https://example.com")
await page.get_by_role("button", name="Start here").click()

An example with a custom callback on every actionability check. It uses a <body> locator that is always visible, so the handler is called before every actionability check:

	Sync
	Async

Setup the handler.
def handler():
 page.evaluate("window.removeObstructionsForTestIfNeeded()")
page.add_locator_handler(page.locator("body"), handler)

Write the test as usual.
page.goto("https://example.com")
page.get_by_role("button", name="Start here").click()

Setup the handler.
def handler():
 await page.evaluate("window.removeObstructionsForTestIfNeeded()")
await page.add_locator_handler(page.locator("body"), handler)

Write the test as usual.
await page.goto("https://example.com")
await page.get_by_role("button", name="Start here").click()

Arguments

	
locator Locator#

Locator that triggers the handler.

	
handler Callable#

Function that should be run once locator appears. This function should get rid of the element that blocks actions like click.

Returns

	NoneType#

add_script_tag

Added in: v1.8
page.add_script_tag
Adds a <script> tag into the page with the desired url or content. Returns the added tag when the script's onload fires or when the script content was injected into frame.

Usage

page.add_script_tag()
page.add_script_tag(**kwargs)

Arguments

	
content str (optional)#

Raw JavaScript content to be injected into frame.

	
path Union[str, pathlib.Path] (optional)#

Path to the JavaScript file to be injected into frame. If path is a relative path, then it is resolved relative to the current working directory.

	
type str (optional)#

Script type. Use 'module' in order to load a Javascript ES6 module. See script for more details.

	
url str (optional)#

URL of a script to be added.

Returns

	ElementHandle#

add_style_tag

Added in: v1.8
page.add_style_tag
Adds a <link rel="stylesheet"> tag into the page with the desired url or a <style type="text/css"> tag with the content. Returns the added tag when the stylesheet's onload fires or when the CSS content was injected into frame.

Usage

page.add_style_tag()
page.add_style_tag(**kwargs)

Arguments

	
content str (optional)#

Raw CSS content to be injected into frame.

	
path Union[str, pathlib.Path] (optional)#

Path to the CSS file to be injected into frame. If path is a relative path, then it is resolved relative to the current working directory.

	
url str (optional)#

URL of the <link> tag.

Returns

	ElementHandle#

bring_to_front

Added in: v1.8
page.bring_to_front
Brings page to front (activates tab).

Usage

page.bring_to_front()

Returns

	NoneType#

close

Added in: v1.8
page.close
If run_before_unload is false, does not run any unload handlers and waits for the page to be closed. If run_before_unload is true the method will run unload handlers, but will not wait for the page to close.

By default, page.close() does not run beforeunload handlers.

note
if run_before_unload is passed as true, a beforeunload dialog might be summoned and should be handled manually via page.on("dialog") event.

Usage

page.close()
page.close(**kwargs)

Arguments

	
reason str (optional) Added in: v1.40#

The reason to be reported to the operations interrupted by the page closure.

	
run_before_unload bool (optional)#

Defaults to false. Whether to run the before unload page handlers.

Returns

	NoneType#

content

Added in: v1.8
page.content
Gets the full HTML contents of the page, including the doctype.

Usage

page.content()

Returns

	str#

drag_and_drop

Added in: v1.13
page.drag_and_drop
This method drags the source element to the target element. It will first move to the source element, perform a mousedown, then move to the target element and perform a mouseup.

Usage

	Sync
	Async

page.drag_and_drop("#source", "#target")
or specify exact positions relative to the top-left corners of the elements:
page.drag_and_drop(
 "#source",
 "#target",
 source_position={"x": 34, "y": 7},
 target_position={"x": 10, "y": 20}
)

await page.drag_and_drop("#source", "#target")
or specify exact positions relative to the top-left corners of the elements:
await page.drag_and_drop(
 "#source",
 "#target",
 source_position={"x": 34, "y": 7},
 target_position={"x": 10, "y": 20}
)

Arguments

	
source str#

A selector to search for an element to drag. If there are multiple elements satisfying the selector, the first will be used.

	
target str#

A selector to search for an element to drop onto. If there are multiple elements satisfying the selector, the first will be used.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
source_position Dict (optional) Added in: v1.14#

	
x float

	
y float

Clicks on the source element at this point relative to the top-left corner of the element's padding box. If not specified, some visible point of the element is used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
target_position Dict (optional) Added in: v1.14#

	
x float

	
y float

Drops on the target element at this point relative to the top-left corner of the element's padding box. If not specified, some visible point of the element is used.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional)#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

emulate_media

Added in: v1.8
page.emulate_media
This method changes the CSS media type through the media argument, and/or the 'prefers-colors-scheme' media feature, using the colorScheme argument.

Usage

	Sync
	Async

page.evaluate("matchMedia('screen').matches")
→ True
page.evaluate("matchMedia('print').matches")
→ False

page.emulate_media(media="print")
page.evaluate("matchMedia('screen').matches")
→ False
page.evaluate("matchMedia('print').matches")
→ True

page.emulate_media()
page.evaluate("matchMedia('screen').matches")
→ True
page.evaluate("matchMedia('print').matches")
→ False

await page.evaluate("matchMedia('screen').matches")
→ True
await page.evaluate("matchMedia('print').matches")
→ False

await page.emulate_media(media="print")
await page.evaluate("matchMedia('screen').matches")
→ False
await page.evaluate("matchMedia('print').matches")
→ True

await page.emulate_media()
await page.evaluate("matchMedia('screen').matches")
→ True
await page.evaluate("matchMedia('print').matches")
→ False

	Sync
	Async

page.emulate_media(color_scheme="dark")
page.evaluate("matchMedia('(prefers-color-scheme: dark)').matches")
→ True
page.evaluate("matchMedia('(prefers-color-scheme: light)').matches")
→ False
page.evaluate("matchMedia('(prefers-color-scheme: no-preference)').matches")

await page.emulate_media(color_scheme="dark")
await page.evaluate("matchMedia('(prefers-color-scheme: dark)').matches")
→ True
await page.evaluate("matchMedia('(prefers-color-scheme: light)').matches")
→ False
await page.evaluate("matchMedia('(prefers-color-scheme: no-preference)').matches")
→ False

Arguments

	
color_scheme "light"|"dark"|"no-preference"|"null" (optional) Added in: v1.9#

Emulates 'prefers-colors-scheme' media feature, supported values are 'light', 'dark', 'no-preference'. Passing 'Null' disables color scheme emulation.

	
forced_colors "active"|"none"|"null" (optional) Added in: v1.15#

	
media "screen"|"print"|"null" (optional) Added in: v1.9#

Changes the CSS media type of the page. The only allowed values are 'Screen', 'Print' and 'Null'. Passing 'Null' disables CSS media emulation.

	
reduced_motion "reduce"|"no-preference"|"null" (optional) Added in: v1.12#

Emulates 'prefers-reduced-motion' media feature, supported values are 'reduce', 'no-preference'. Passing null disables reduced motion emulation.

Returns

	NoneType#

evaluate

Added in: v1.8
page.evaluate
Returns the value of the expression invocation.

If the function passed to the page.evaluate() returns a Promise, then page.evaluate() would wait for the promise to resolve and return its value.

If the function passed to the page.evaluate() returns a non-Serializable value, then page.evaluate() resolves to undefined. Playwright also supports transferring some additional values that are not serializable by JSON: -0, NaN, Infinity, -Infinity.

Usage

Passing argument to expression:

	Sync
	Async

result = page.evaluate("([x, y]) => Promise.resolve(x * y)", [7, 8])
print(result) # prints "56"

result = await page.evaluate("([x, y]) => Promise.resolve(x * y)", [7, 8])
print(result) # prints "56"

A string can also be passed in instead of a function:

	Sync
	Async

print(page.evaluate("1 + 2")) # prints "3"
x = 10
print(page.evaluate(f"1 + {x}")) # prints "11"

print(await page.evaluate("1 + 2")) # prints "3"
x = 10
print(await page.evaluate(f"1 + {x}")) # prints "11"

ElementHandle instances can be passed as an argument to the page.evaluate():

	Sync
	Async

body_handle = page.evaluate("document.body")
html = page.evaluate("([body, suffix]) => body.innerHTML + suffix", [body_handle, "hello"])
body_handle.dispose()

body_handle = await page.evaluate("document.body")
html = await page.evaluate("([body, suffix]) => body.innerHTML + suffix", [body_handle, "hello"])
await body_handle.dispose()

Arguments

	
expression str#

JavaScript expression to be evaluated in the browser context. If the expression evaluates to a function, the function is automatically invoked.

	
arg EvaluationArgument (optional)#

Optional argument to pass to expression.

Returns

	Serializable#

evaluate_handle

Added in: v1.8
page.evaluate_handle
Returns the value of the expression invocation as a JSHandle.

The only difference between page.evaluate() and page.evaluate_handle() is that page.evaluate_handle() returns JSHandle.

If the function passed to the page.evaluate_handle() returns a Promise, then page.evaluate_handle() would wait for the promise to resolve and return its value.

Usage

	Sync
	Async

a_window_handle = page.evaluate_handle("Promise.resolve(window)")
a_window_handle # handle for the window object.

a_window_handle = await page.evaluate_handle("Promise.resolve(window)")
a_window_handle # handle for the window object.

A string can also be passed in instead of a function:

	Sync
	Async

a_handle = page.evaluate_handle("document") # handle for the "document"

a_handle = await page.evaluate_handle("document") # handle for the "document"

JSHandle instances can be passed as an argument to the page.evaluate_handle():

	Sync
	Async

a_handle = page.evaluate_handle("document.body")
result_handle = page.evaluate_handle("body => body.innerHTML", a_handle)
print(result_handle.json_value())
result_handle.dispose()

a_handle = await page.evaluate_handle("document.body")
result_handle = await page.evaluate_handle("body => body.innerHTML", a_handle)
print(await result_handle.json_value())
await result_handle.dispose()

Arguments

	
expression str#

JavaScript expression to be evaluated in the browser context. If the expression evaluates to a function, the function is automatically invoked.

	
arg EvaluationArgument (optional)#

Optional argument to pass to expression.

Returns

	JSHandle#

expect_console_message

Added in: v1.9
page.expect_console_message
Performs action and waits for a ConsoleMessage to be logged by in the page. If predicate is provided, it passes ConsoleMessage value into the predicate function and waits for predicate(message) to return a truthy value. Will throw an error if the page is closed before the page.on("console") event is fired.

Usage

page.expect_console_message()
page.expect_console_message(**kwargs)

Arguments

	
predicate Callable[ConsoleMessage]:bool (optional)#

Receives the ConsoleMessage object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[ConsoleMessage]#

expect_download

Added in: v1.9
page.expect_download
Performs action and waits for a new Download. If predicate is provided, it passes Download value into the predicate function and waits for predicate(download) to return a truthy value. Will throw an error if the page is closed before the download event is fired.

Usage

page.expect_download()
page.expect_download(**kwargs)

Arguments

	
predicate Callable[Download]:bool (optional)#

Receives the Download object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[Download]#

expect_event

Added in: v1.8
page.expect_event
Waits for event to fire and passes its value into the predicate function. Returns when the predicate returns truthy value. Will throw an error if the page is closed before the event is fired. Returns the event data value.

Usage

	Sync
	Async

with page.expect_event("framenavigated") as event_info:
 page.get_by_role("button")
frame = event_info.value

async with page.expect_event("framenavigated") as event_info:
 await page.get_by_role("button")
frame = await event_info.value

Arguments

	
event str#

Event name, same one typically passed into *.on(event).

	
predicate Callable (optional)#

Receives the event data and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager#

expect_file_chooser

Added in: v1.9
page.expect_file_chooser
Performs action and waits for a new FileChooser to be created. If predicate is provided, it passes FileChooser value into the predicate function and waits for predicate(fileChooser) to return a truthy value. Will throw an error if the page is closed before the file chooser is opened.

Usage

page.expect_file_chooser()
page.expect_file_chooser(**kwargs)

Arguments

	
predicate Callable[FileChooser]:bool (optional)#

Receives the FileChooser object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[FileChooser]#

expect_popup

Added in: v1.9
page.expect_popup
Performs action and waits for a popup Page. If predicate is provided, it passes [Popup] value into the predicate function and waits for predicate(page) to return a truthy value. Will throw an error if the page is closed before the popup event is fired.

Usage

page.expect_popup()
page.expect_popup(**kwargs)

Arguments

	
predicate Callable[Page]:bool (optional)#

Receives the Page object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[Page]#

expect_request

Added in: v1.8
page.expect_request
Waits for the matching request and returns it. See waiting for event for more details about events.

Usage

	Sync
	Async

with page.expect_request("http://example.com/resource") as first:
 page.get_by_text("trigger request").click()
first_request = first.value

or with a lambda
with page.expect_request(lambda request: request.url == "http://example.com" and request.method == "get") as second:
 page.get_by_text("trigger request").click()
second_request = second.value

async with page.expect_request("http://example.com/resource") as first:
 await page.get_by_text("trigger request").click()
first_request = await first.value

or with a lambda
async with page.expect_request(lambda request: request.url == "http://example.com" and request.method == "get") as second:
 await page.get_by_text("trigger request").click()
second_request = await second.value

Arguments

	
url_or_predicate str|Pattern|Callable[Request]:bool#

Request URL string, regex or predicate receiving Request object. When a base_url via the context options was provided and the passed URL is a path, it gets merged via the new URL() constructor.

	
timeout float (optional)#

Maximum wait time in milliseconds, defaults to 30 seconds, pass 0 to disable the timeout. The default value can be changed by using the page.set_default_timeout() method.

Returns

	EventContextManager[Request]#

expect_request_finished

Added in: v1.12
page.expect_request_finished
Performs action and waits for a Request to finish loading. If predicate is provided, it passes Request value into the predicate function and waits for predicate(request) to return a truthy value. Will throw an error if the page is closed before the page.on("requestfinished") event is fired.

Usage

page.expect_request_finished()
page.expect_request_finished(**kwargs)

Arguments

	
predicate Callable[Request]:bool (optional)#

Receives the Request object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[Request]#

expect_response

Added in: v1.8
page.expect_response
Returns the matched response. See waiting for event for more details about events.

Usage

	Sync
	Async

with page.expect_response("https://example.com/resource") as response_info:
 page.get_by_text("trigger response").click()
response = response_info.value
return response.ok

or with a lambda
with page.expect_response(lambda response: response.url == "https://example.com" and response.status == 200) as response_info:
 page.get_by_text("trigger response").click()
response = response_info.value
return response.ok

async with page.expect_response("https://example.com/resource") as response_info:
 await page.get_by_text("trigger response").click()
response = await response_info.value
return response.ok

or with a lambda
async with page.expect_response(lambda response: response.url == "https://example.com" and response.status == 200) as response_info:
 await page.get_by_text("trigger response").click()
response = await response_info.value
return response.ok

Arguments

	
url_or_predicate str|Pattern|Callable[Response]:bool#

Request URL string, regex or predicate receiving Response object. When a base_url via the context options was provided and the passed URL is a path, it gets merged via the new URL() constructor.

	
timeout float (optional)#

Maximum wait time in milliseconds, defaults to 30 seconds, pass 0 to disable the timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	EventContextManager[Response]#

expect_websocket

Added in: v1.9
page.expect_websocket
Performs action and waits for a new WebSocket. If predicate is provided, it passes WebSocket value into the predicate function and waits for predicate(webSocket) to return a truthy value. Will throw an error if the page is closed before the WebSocket event is fired.

Usage

page.expect_websocket()
page.expect_websocket(**kwargs)

Arguments

	
predicate Callable[WebSocket]:bool (optional)#

Receives the WebSocket object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[WebSocket]#

expect_worker

Added in: v1.9
page.expect_worker
Performs action and waits for a new Worker. If predicate is provided, it passes Worker value into the predicate function and waits for predicate(worker) to return a truthy value. Will throw an error if the page is closed before the worker event is fired.

Usage

page.expect_worker()
page.expect_worker(**kwargs)

Arguments

	
predicate Callable[Worker]:bool (optional)#

Receives the Worker object and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	EventContextManager[Worker]#

expose_binding

Added in: v1.8
page.expose_binding
The method adds a function called name on the window object of every frame in this page. When called, the function executes callback and returns a Promise which resolves to the return value of callback. If the callback returns a Promise, it will be awaited.

The first argument of the callback function contains information about the caller: { browserContext: BrowserContext, page: Page, frame: Frame }.

See browser_context.expose_binding() for the context-wide version.

note
Functions installed via page.expose_binding() survive navigations.

Usage

An example of exposing page URL to all frames in a page:

	Sync
	Async

from playwright.sync_api import sync_playwright, Playwright

def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = webkit.launch(headless=False)
 context = browser.new_context()
 page = context.new_page()
 page.expose_binding("pageURL", lambda source: source["page"].url)
 page.set_content("""
 <script>
 async function onClick() {
 document.querySelector('div').textContent = await window.pageURL();
 }
 </script>
 <button onclick="onClick()">Click me</button>
 <div></div>
 """)
 page.click("button")

with sync_playwright() as playwright:
 run(playwright)

import asyncio
from playwright.async_api import async_playwright, Playwright

async def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = await webkit.launch(headless=False)
 context = await browser.new_context()
 page = await context.new_page()
 await page.expose_binding("pageURL", lambda source: source["page"].url)
 await page.set_content("""
 <script>
 async function onClick() {
 document.querySelector('div').textContent = await window.pageURL();
 }
 </script>
 <button onclick="onClick()">Click me</button>
 <div></div>
 """)
 await page.click("button")

async def main():
 async with async_playwright() as playwright:
 await run(playwright)
asyncio.run(main())

An example of passing an element handle:

	Sync
	Async

def print(source, element):
 print(element.text_content())

page.expose_binding("clicked", print, handle=true)
page.set_content("""
 <script>
 document.addEventListener('click', event => window.clicked(event.target));
 </script>
 <div>Click me</div>
 <div>Or click me</div>
""")

async def print(source, element):
 print(await element.text_content())

await page.expose_binding("clicked", print, handle=true)
await page.set_content("""
 <script>
 document.addEventListener('click', event => window.clicked(event.target));
 </script>
 <div>Click me</div>
 <div>Or click me</div>
""")

Arguments

	
name str#

Name of the function on the window object.

	
callback Callable#

Callback function that will be called in the Playwright's context.

	
handle bool (optional)#

Whether to pass the argument as a handle, instead of passing by value. When passing a handle, only one argument is supported. When passing by value, multiple arguments are supported.

Returns

	NoneType#

expose_function

Added in: v1.8
page.expose_function
The method adds a function called name on the window object of every frame in the page. When called, the function executes callback and returns a Promise which resolves to the return value of callback.

If the callback returns a Promise, it will be awaited.

See browser_context.expose_function() for context-wide exposed function.

note
Functions installed via page.expose_function() survive navigations.

Usage

An example of adding a sha256 function to the page:

	Sync
	Async

import hashlib
from playwright.sync_api import sync_playwright, Playwright

def sha256(text):
 m = hashlib.sha256()
 m.update(bytes(text, "utf8"))
 return m.hexdigest()

def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = webkit.launch(headless=False)
 page = browser.new_page()
 page.expose_function("sha256", sha256)
 page.set_content("""
 <script>
 async function onClick() {
 document.querySelector('div').textContent = await window.sha256('PLAYWRIGHT');
 }
 </script>
 <button onclick="onClick()">Click me</button>
 <div></div>
 """)
 page.click("button")

with sync_playwright() as playwright:
 run(playwright)

import asyncio
import hashlib
from playwright.async_api import async_playwright, Playwright

def sha256(text):
 m = hashlib.sha256()
 m.update(bytes(text, "utf8"))
 return m.hexdigest()

async def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = await webkit.launch(headless=False)
 page = await browser.new_page()
 await page.expose_function("sha256", sha256)
 await page.set_content("""
 <script>
 async function onClick() {
 document.querySelector('div').textContent = await window.sha256('PLAYWRIGHT');
 }
 </script>
 <button onclick="onClick()">Click me</button>
 <div></div>
 """)
 await page.click("button")

async def main():
 async with async_playwright() as playwright:
 await run(playwright)
asyncio.run(main())

Arguments

	
name str#

Name of the function on the window object

	
callback Callable#

Callback function which will be called in Playwright's context.

Returns

	NoneType#

frame

Added in: v1.8
page.frame
Returns frame matching the specified criteria. Either name or url must be specified.

Usage

frame = page.frame(name="frame-name")

frame = page.frame(url=r".*domain.*")

Arguments

	
name str (optional)#

Frame name specified in the iframe's name attribute. Optional.

	
url str|Pattern|Callable[URL]:bool (optional)#

A glob pattern, regex pattern or predicate receiving frame's url as a URL object. Optional.

Returns

	NoneType|Frame#

frame_locator

Added in: v1.17
page.frame_locator
When working with iframes, you can create a frame locator that will enter the iframe and allow selecting elements in that iframe.

Usage

Following snippet locates element with text "Submit" in the iframe with id my-frame, like <iframe id="my-frame">:

	Sync
	Async

locator = page.frame_locator("#my-iframe").get_by_text("Submit")
locator.click()

locator = page.frame_locator("#my-iframe").get_by_text("Submit")
await locator.click()

Arguments

	
selector str#

A selector to use when resolving DOM element.

Returns

	FrameLocator#

get_by_alt_text

Added in: v1.27
page.get_by_alt_text
Allows locating elements by their alt text.

Usage

For example, this method will find the image by alt text "Playwright logo":

	Sync
	Async

page.get_by_alt_text("Playwright logo").click()

await page.get_by_alt_text("Playwright logo").click()

Arguments

	
text str|Pattern#

Text to locate the element for.

	
exact bool (optional)#

Whether to find an exact match: case-sensitive and whole-string. Default to false. Ignored when locating by a regular expression. Note that exact match still trims whitespace.

Returns

	Locator#

get_by_label

Added in: v1.27
page.get_by_label
Allows locating input elements by the text of the associated <label> or aria-labelledby element, or by the aria-label attribute.

Usage

For example, this method will find inputs by label "Username" and "Password" in the following DOM:

<input aria-label="Username">
<label for="password-input">Password:</label>
<input id="password-input">

	Sync
	Async

page.get_by_label("Username").fill("john")
page.get_by_label("Password").fill("secret")

await page.get_by_label("Username").fill("john")
await page.get_by_label("Password").fill("secret")

Arguments

	
text str|Pattern#

Text to locate the element for.

	
exact bool (optional)#

Whether to find an exact match: case-sensitive and whole-string. Default to false. Ignored when locating by a regular expression. Note that exact match still trims whitespace.

Returns

	Locator#

get_by_placeholder

Added in: v1.27
page.get_by_placeholder
Allows locating input elements by the placeholder text.

Usage

For example, consider the following DOM structure.

<input type="email" placeholder="name@example.com" />

You can fill the input after locating it by the placeholder text:

	Sync
	Async

page.get_by_placeholder("name@example.com").fill("playwright@microsoft.com")

await page.get_by_placeholder("name@example.com").fill("playwright@microsoft.com")

Arguments

	
text str|Pattern#

Text to locate the element for.

	
exact bool (optional)#

Whether to find an exact match: case-sensitive and whole-string. Default to false. Ignored when locating by a regular expression. Note that exact match still trims whitespace.

Returns

	Locator#

get_by_role

Added in: v1.27
page.get_by_role
Allows locating elements by their ARIA role, ARIA attributes and accessible name.

Usage

Consider the following DOM structure.

<h3>Sign up</h3>
<label>
 <input type="checkbox" /> Subscribe
</label>

<button>Submit</button>

You can locate each element by it's implicit role:

	Sync
	Async

expect(page.get_by_role("heading", name="Sign up")).to_be_visible()

page.get_by_role("checkbox", name="Subscribe").check()

page.get_by_role("button", name=re.compile("submit", re.IGNORECASE)).click()

await expect(page.get_by_role("heading", name="Sign up")).to_be_visible()

await page.get_by_role("checkbox", name="Subscribe").check()

await page.get_by_role("button", name=re.compile("submit", re.IGNORECASE)).click()

Arguments

	
role "alert"|"alertdialog"|"application"|"article"|"banner"|"blockquote"|"button"|"caption"|"cell"|"checkbox"|"code"|"columnheader"|"combobox"|"complementary"|"contentinfo"|"definition"|"deletion"|"dialog"|"directory"|"document"|"emphasis"|"feed"|"figure"|"form"|"generic"|"grid"|"gridcell"|"group"|"heading"|"img"|"insertion"|"link"|"list"|"listbox"|"listitem"|"log"|"main"|"marquee"|"math"|"meter"|"menu"|"menubar"|"menuitem"|"menuitemcheckbox"|"menuitemradio"|"navigation"|"none"|"note"|"option"|"paragraph"|"presentation"|"progressbar"|"radio"|"radiogroup"|"region"|"row"|"rowgroup"|"rowheader"|"scrollbar"|"search"|"searchbox"|"separator"|"slider"|"spinbutton"|"status"|"strong"|"subscript"|"superscript"|"switch"|"tab"|"table"|"tablist"|"tabpanel"|"term"|"textbox"|"time"|"timer"|"toolbar"|"tooltip"|"tree"|"treegrid"|"treeitem"#

Required aria role.

	
checked bool (optional)#

An attribute that is usually set by aria-checked or native <input type=checkbox> controls.

Learn more about aria-checked.

	
disabled bool (optional)#

An attribute that is usually set by aria-disabled or disabled.

note
Unlike most other attributes, disabled is inherited through the DOM hierarchy. Learn more about aria-disabled.

	
exact bool (optional) Added in: v1.28#

Whether name is matched exactly: case-sensitive and whole-string. Defaults to false. Ignored when name is a regular expression. Note that exact match still trims whitespace.

	
expanded bool (optional)#

An attribute that is usually set by aria-expanded.

Learn more about aria-expanded.

	
include_hidden bool (optional)#

Option that controls whether hidden elements are matched. By default, only non-hidden elements, as defined by ARIA, are matched by role selector.

Learn more about aria-hidden.

	
level int (optional)#

A number attribute that is usually present for roles heading, listitem, row, treeitem, with default values for <h1>-<h6> elements.

Learn more about aria-level.

	
name str|Pattern (optional)#

Option to match the accessible name. By default, matching is case-insensitive and searches for a substring, use exact to control this behavior.

Learn more about accessible name.

	
pressed bool (optional)#

An attribute that is usually set by aria-pressed.

Learn more about aria-pressed.

	
selected bool (optional)#

An attribute that is usually set by aria-selected.

Learn more about aria-selected.

Returns

	Locator#

Details

Role selector does not replace accessibility audits and conformance tests, but rather gives early feedback about the ARIA guidelines.

Many html elements have an implicitly defined role that is recognized by the role selector. You can find all the supported roles here. ARIA guidelines do not recommend duplicating implicit roles and attributes by setting role and/or aria-* attributes to default values.

get_by_test_id

Added in: v1.27
page.get_by_test_id
Locate element by the test id.

Usage

Consider the following DOM structure.

<button data-testid="directions">Itinéraire</button>

You can locate the element by it's test id:

	Sync
	Async

page.get_by_test_id("directions").click()

await page.get_by_test_id("directions").click()

Arguments

	
test_id str|Pattern#

Id to locate the element by.

Returns

	Locator#

Details

By default, the data-testid attribute is used as a test id. Use selectors.set_test_id_attribute() to configure a different test id attribute if necessary.

get_by_text

Added in: v1.27
page.get_by_text
Allows locating elements that contain given text.

See also locator.filter() that allows to match by another criteria, like an accessible role, and then filter by the text content.

Usage

Consider the following DOM structure:

<div>Hello world</div>
<div>Hello</div>

You can locate by text substring, exact string, or a regular expression:

	Sync
	Async

Matches
page.get_by_text("world")

Matches first <div>
page.get_by_text("Hello world")

Matches second <div>
page.get_by_text("Hello", exact=True)

Matches both <div>s
page.get_by_text(re.compile("Hello"))

Matches second <div>
page.get_by_text(re.compile("^hello$", re.IGNORECASE))

Matches
page.get_by_text("world")

Matches first <div>
page.get_by_text("Hello world")

Matches second <div>
page.get_by_text("Hello", exact=True)

Matches both <div>s
page.get_by_text(re.compile("Hello"))

Matches second <div>
page.get_by_text(re.compile("^hello$", re.IGNORECASE))

Arguments

	
text str|Pattern#

Text to locate the element for.

	
exact bool (optional)#

Whether to find an exact match: case-sensitive and whole-string. Default to false. Ignored when locating by a regular expression. Note that exact match still trims whitespace.

Returns

	Locator#

Details

Matching by text always normalizes whitespace, even with exact match. For example, it turns multiple spaces into one, turns line breaks into spaces and ignores leading and trailing whitespace.

Input elements of the type button and submit are matched by their value instead of the text content. For example, locating by text "Log in" matches <input type=button value="Log in">.

get_by_title

Added in: v1.27
page.get_by_title
Allows locating elements by their title attribute.

Usage

Consider the following DOM structure.

25 issues

You can check the issues count after locating it by the title text:

	Sync
	Async

expect(page.get_by_title("Issues count")).to_have_text("25 issues")

await expect(page.get_by_title("Issues count")).to_have_text("25 issues")

Arguments

	
text str|Pattern#

Text to locate the element for.

	
exact bool (optional)#

Whether to find an exact match: case-sensitive and whole-string. Default to false. Ignored when locating by a regular expression. Note that exact match still trims whitespace.

Returns

	Locator#

go_back

Added in: v1.8
page.go_back
Returns the main resource response. In case of multiple redirects, the navigation will resolve with the response of the last redirect. If can not go back, returns null.

Navigate to the previous page in history.

Usage

page.go_back()
page.go_back(**kwargs)

Arguments

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	NoneType|Response#

go_forward

Added in: v1.8
page.go_forward
Returns the main resource response. In case of multiple redirects, the navigation will resolve with the response of the last redirect. If can not go forward, returns null.

Navigate to the next page in history.

Usage

page.go_forward()
page.go_forward(**kwargs)

Arguments

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	NoneType|Response#

goto

Added in: v1.8
page.goto
Returns the main resource response. In case of multiple redirects, the navigation will resolve with the first non-redirect response.

The method will throw an error if:

	there's an SSL error (e.g. in case of self-signed certificates).
	target URL is invalid.
	the timeout is exceeded during navigation.
	the remote server does not respond or is unreachable.
	the main resource failed to load.

The method will not throw an error when any valid HTTP status code is returned by the remote server, including 404 "Not Found" and 500 "Internal Server Error". The status code for such responses can be retrieved by calling response.status.

note
The method either throws an error or returns a main resource response. The only exceptions are navigation to about:blank or navigation to the same URL with a different hash, which would succeed and return null.

note
Headless mode doesn't support navigation to a PDF document. See the upstream issue.

Usage

page.goto(url)
page.goto(url, **kwargs)

Arguments

	
url str#

URL to navigate page to. The url should include scheme, e.g. https://. When a base_url via the context options was provided and the passed URL is a path, it gets merged via the new URL() constructor.

	
referer str (optional)#

Referer header value. If provided it will take preference over the referer header value set by page.set_extra_http_headers().

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	NoneType|Response#

locator

Added in: v1.14
page.locator
The method returns an element locator that can be used to perform actions on this page / frame. Locator is resolved to the element immediately before performing an action, so a series of actions on the same locator can in fact be performed on different DOM elements. That would happen if the DOM structure between those actions has changed.

Learn more about locators.

Usage

page.locator(selector)
page.locator(selector, **kwargs)

Arguments

	
selector str#

A selector to use when resolving DOM element.

	
has Locator (optional)#

Narrows down the results of the method to those which contain elements matching this relative locator. For example, article that has text=Playwright matches <article><div>Playwright</div></article>.

Inner locator must be relative to the outer locator and is queried starting with the outer locator match, not the document root. For example, you can find content that has div in <article><content><div>Playwright</div></content></article>. However, looking for content that has article div will fail, because the inner locator must be relative and should not use any elements outside the content.

Note that outer and inner locators must belong to the same frame. Inner locator must not contain FrameLocators.

	
has_not Locator (optional) Added in: v1.33#

Matches elements that do not contain an element that matches an inner locator. Inner locator is queried against the outer one. For example, article that does not have div matches <article>Playwright</article>.

Note that outer and inner locators must belong to the same frame. Inner locator must not contain FrameLocators.

	
has_not_text str|Pattern (optional) Added in: v1.33#

Matches elements that do not contain specified text somewhere inside, possibly in a child or a descendant element. When passed a [string], matching is case-insensitive and searches for a substring.

	
has_text str|Pattern (optional)#

Matches elements containing specified text somewhere inside, possibly in a child or a descendant element. When passed a [string], matching is case-insensitive and searches for a substring. For example, "Playwright" matches <article><div>Playwright</div></article>.

Returns

	Locator#

opener

Added in: v1.8
page.opener
Returns the opener for popup pages and null for others. If the opener has been closed already the returns null.

Usage

page.opener()

Returns

	NoneType|Page#

pause

Added in: v1.9
page.pause
Pauses script execution. Playwright will stop executing the script and wait for the user to either press 'Resume' button in the page overlay or to call playwright.resume() in the DevTools console.

User can inspect selectors or perform manual steps while paused. Resume will continue running the original script from the place it was paused.

note
This method requires Playwright to be started in a headed mode, with a falsy headless value in the browser_type.launch().

Usage

page.pause()

Returns

	NoneType#

pdf

Added in: v1.8
page.pdf
Returns the PDF buffer.

note
Generating a pdf is currently only supported in Chromium headless.

page.pdf() generates a pdf of the page with print css media. To generate a pdf with screen media, call page.emulate_media() before calling page.pdf():

note
By default, page.pdf() generates a pdf with modified colors for printing. Use the -webkit-print-color-adjust property to force rendering of exact colors.

Usage

	Sync
	Async

generates a pdf with "screen" media type.
page.emulate_media(media="screen")
page.pdf(path="page.pdf")

generates a pdf with "screen" media type.
await page.emulate_media(media="screen")
await page.pdf(path="page.pdf")

The width, height, and margin options accept values labeled with units. Unlabeled values are treated as pixels.

A few examples:

	page.pdf({width: 100}) - prints with width set to 100 pixels
	page.pdf({width: '100px'}) - prints with width set to 100 pixels
	page.pdf({width: '10cm'}) - prints with width set to 10 centimeters.

All possible units are:

	px - pixel
	in - inch
	cm - centimeter
	mm - millimeter

The format options are:

	Letter: 8.5in x 11in
	Legal: 8.5in x 14in
	Tabloid: 11in x 17in
	Ledger: 17in x 11in
	A0: 33.1in x 46.8in
	A1: 23.4in x 33.1in
	A2: 16.54in x 23.4in
	A3: 11.7in x 16.54in
	A4: 8.27in x 11.7in
	A5: 5.83in x 8.27in
	A6: 4.13in x 5.83in

note
header_template and footer_template markup have the following limitations: > 1. Script tags inside templates are not evaluated. > 2. Page styles are not visible inside templates.

Arguments

	
display_header_footer bool (optional)#

Display header and footer. Defaults to false.

	
footer_template str (optional)#

HTML template for the print footer. Should use the same format as the header_template.

	
format str (optional)#

Paper format. If set, takes priority over width or height options. Defaults to 'Letter'.

	
header_template str (optional)#

HTML template for the print header. Should be valid HTML markup with following classes used to inject printing values into them:

	'date' formatted print date
	'title' document title
	'url' document location
	'pageNumber' current page number
	'totalPages' total pages in the document

	
height str|float (optional)#

Paper height, accepts values labeled with units.

	
landscape bool (optional)#

Paper orientation. Defaults to false.

	
margin Dict (optional)#

	
top str|float (optional)

Top margin, accepts values labeled with units. Defaults to 0.

	
right str|float (optional)

Right margin, accepts values labeled with units. Defaults to 0.

	
bottom str|float (optional)

Bottom margin, accepts values labeled with units. Defaults to 0.

	
left str|float (optional)

Left margin, accepts values labeled with units. Defaults to 0.

Paper margins, defaults to none.

	
outline bool (optional) Added in: v1.42#

Whether or not to embed the document outline into the PDF. Defaults to false.

	
page_ranges str (optional)#

Paper ranges to print, e.g., '1-5, 8, 11-13'. Defaults to the empty string, which means print all pages.

	
path Union[str, pathlib.Path] (optional)#

The file path to save the PDF to. If path is a relative path, then it is resolved relative to the current working directory. If no path is provided, the PDF won't be saved to the disk.

	
prefer_css_page_size bool (optional)#

Give any CSS @page size declared in the page priority over what is declared in width and height or format options. Defaults to false, which will scale the content to fit the paper size.

	
print_background bool (optional)#

Print background graphics. Defaults to false.

	
scale float (optional)#

Scale of the webpage rendering. Defaults to 1. Scale amount must be between 0.1 and 2.

	
tagged bool (optional) Added in: v1.42#

Whether or not to generate tagged (accessible) PDF. Defaults to false.

	
width str|float (optional)#

Paper width, accepts values labeled with units.

Returns

	bytes#

reload

Added in: v1.8
page.reload
This method reloads the current page, in the same way as if the user had triggered a browser refresh. Returns the main resource response. In case of multiple redirects, the navigation will resolve with the response of the last redirect.

Usage

page.reload()
page.reload(**kwargs)

Arguments

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	NoneType|Response#

route

Added in: v1.8
page.route
Routing provides the capability to modify network requests that are made by a page.

Once routing is enabled, every request matching the url pattern will stall unless it's continued, fulfilled or aborted.

note
The handler will only be called for the first url if the response is a redirect.

note
page.route() will not intercept requests intercepted by Service Worker. See this issue. We recommend disabling Service Workers when using request interception by setting browser.new_context.service_workers to 'block'.

Usage

An example of a naive handler that aborts all image requests:

	Sync
	Async

page = browser.new_page()
page.route("**/*.{png,jpg,jpeg}", lambda route: route.abort())
page.goto("https://example.com")
browser.close()

page = await browser.new_page()
await page.route("**/*.{png,jpg,jpeg}", lambda route: route.abort())
await page.goto("https://example.com")
await browser.close()

or the same snippet using a regex pattern instead:

	Sync
	Async

page = browser.new_page()
page.route(re.compile(r"(\.png$)|(\.jpg$)"), lambda route: route.abort())
page.goto("https://example.com")
browser.close()

page = await browser.new_page()
await page.route(re.compile(r"(\.png$)|(\.jpg$)"), lambda route: route.abort())
await page.goto("https://example.com")
await browser.close()

It is possible to examine the request to decide the route action. For example, mocking all requests that contain some post data, and leaving all other requests as is:

	Sync
	Async

def handle_route(route: Route):
 if ("my-string" in route.request.post_data):
 route.fulfill(body="mocked-data")
 else:
 route.continue_()
page.route("/api/**", handle_route)

async def handle_route(route: Route):
 if ("my-string" in route.request.post_data):
 await route.fulfill(body="mocked-data")
 else:
 await route.continue_()
await page.route("/api/**", handle_route)

Page routes take precedence over browser context routes (set up with browser_context.route()) when request matches both handlers.

To remove a route with its handler you can use page.unroute().

note
Enabling routing disables http cache.

Arguments

	
url str|Pattern|Callable[URL]:bool#

A glob pattern, regex pattern or predicate receiving URL to match while routing. When a base_url via the context options was provided and the passed URL is a path, it gets merged via the new URL() constructor.

	
handler Callable[Route, Request]:Promise[Any]|Any#

handler function to route the request.

	
times int (optional) Added in: v1.15#

How often a route should be used. By default it will be used every time.

Returns

	NoneType#

route_from_har

Added in: v1.23
page.route_from_har
If specified the network requests that are made in the page will be served from the HAR file. Read more about Replaying from HAR.

Playwright will not serve requests intercepted by Service Worker from the HAR file. See this issue. We recommend disabling Service Workers when using request interception by setting browser.new_context.service_workers to 'block'.

Usage

page.route_from_har(har)
page.route_from_har(har, **kwargs)

Arguments

	
har Union[str, pathlib.Path]#

Path to a HAR file with prerecorded network data. If path is a relative path, then it is resolved relative to the current working directory.

	
not_found "abort"|"fallback" (optional)#

	If set to 'abort' any request not found in the HAR file will be aborted.
	If set to 'fallback' missing requests will be sent to the network.

Defaults to abort.

	
update bool (optional)#

If specified, updates the given HAR with the actual network information instead of serving from file. The file is written to disk when browser_context.close() is called.

	
update_content "embed"|"attach" (optional) Added in: v1.32#

Optional setting to control resource content management. If attach is specified, resources are persisted as separate files or entries in the ZIP archive. If embed is specified, content is stored inline the HAR file.

	
update_mode "full"|"minimal" (optional) Added in: v1.32#

When set to minimal, only record information necessary for routing from HAR. This omits sizes, timing, page, cookies, security and other types of HAR information that are not used when replaying from HAR. Defaults to full.

	
url str|Pattern (optional)#

A glob pattern, regular expression or predicate to match the request URL. Only requests with URL matching the pattern will be served from the HAR file. If not specified, all requests are served from the HAR file.

Returns

	NoneType#

screenshot

Added in: v1.8
page.screenshot
Returns the buffer with the captured screenshot.

Usage

page.screenshot()
page.screenshot(**kwargs)

Arguments

	
animations "disabled"|"allow" (optional)#

When set to "disabled", stops CSS animations, CSS transitions and Web Animations. Animations get different treatment depending on their duration:

	finite animations are fast-forwarded to completion, so they'll fire transitionend event.
	infinite animations are canceled to initial state, and then played over after the screenshot.

Defaults to "allow" that leaves animations untouched.

	
caret "hide"|"initial" (optional)#

When set to "hide", screenshot will hide text caret. When set to "initial", text caret behavior will not be changed. Defaults to "hide".

	
clip Dict (optional)#

	
x float

x-coordinate of top-left corner of clip area

	
y float

y-coordinate of top-left corner of clip area

	
width float

width of clipping area

	
height float

height of clipping area

An object which specifies clipping of the resulting image.

	
full_page bool (optional)#

When true, takes a screenshot of the full scrollable page, instead of the currently visible viewport. Defaults to false.

	
mask List[Locator] (optional)#

Specify locators that should be masked when the screenshot is taken. Masked elements will be overlaid with a pink box #FF00FF (customized by mask_color) that completely covers its bounding box.

	
mask_color str (optional) Added in: v1.35#

Specify the color of the overlay box for masked elements, in CSS color format. Default color is pink #FF00FF.

	
omit_background bool (optional)#

Hides default white background and allows capturing screenshots with transparency. Not applicable to jpeg images. Defaults to false.

	
path Union[str, pathlib.Path] (optional)#

The file path to save the image to. The screenshot type will be inferred from file extension. If path is a relative path, then it is resolved relative to the current working directory. If no path is provided, the image won't be saved to the disk.

	
quality int (optional)#

The quality of the image, between 0-100. Not applicable to png images.

	
scale "css"|"device" (optional)#

When set to "css", screenshot will have a single pixel per each css pixel on the page. For high-dpi devices, this will keep screenshots small. Using "device" option will produce a single pixel per each device pixel, so screenshots of high-dpi devices will be twice as large or even larger.

Defaults to "device".

	
style str (optional) Added in: v1.41#

Text of the stylesheet to apply while making the screenshot. This is where you can hide dynamic elements, make elements invisible or change their properties to help you creating repeatable screenshots. This stylesheet pierces the Shadow DOM and applies to the inner frames.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
type "png"|"jpeg" (optional)#

Specify screenshot type, defaults to png.

Returns

	bytes#

set_content

Added in: v1.8
page.set_content
This method internally calls document.write(), inheriting all its specific characteristics and behaviors.

Usage

page.set_content(html)
page.set_content(html, **kwargs)

Arguments

	
html str#

HTML markup to assign to the page.

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	NoneType#

set_default_navigation_timeout

Added in: v1.8
page.set_default_navigation_timeout
This setting will change the default maximum navigation time for the following methods and related shortcuts:

	page.go_back()
	page.go_forward()
	page.goto()
	page.reload()
	page.set_content()
	page.expect_navigation()
	page.wait_for_url()

note
page.set_default_navigation_timeout() takes priority over page.set_default_timeout(), browser_context.set_default_timeout() and browser_context.set_default_navigation_timeout().

Usage

page.set_default_navigation_timeout(timeout)

Arguments

	
timeout float#

Maximum navigation time in milliseconds

set_default_timeout

Added in: v1.8
page.set_default_timeout
This setting will change the default maximum time for all the methods accepting timeout option.

note
page.set_default_navigation_timeout() takes priority over page.set_default_timeout().

Usage

page.set_default_timeout(timeout)

Arguments

	
timeout float#

Maximum time in milliseconds

set_extra_http_headers

Added in: v1.8
page.set_extra_http_headers
The extra HTTP headers will be sent with every request the page initiates.

note
page.set_extra_http_headers() does not guarantee the order of headers in the outgoing requests.

Usage

page.set_extra_http_headers(headers)

Arguments

	
headers Dict[str, str]#

An object containing additional HTTP headers to be sent with every request. All header values must be strings.

Returns

	NoneType#

set_viewport_size

Added in: v1.8
page.set_viewport_size
In the case of multiple pages in a single browser, each page can have its own viewport size. However, browser.new_context() allows to set viewport size (and more) for all pages in the context at once.

page.set_viewport_size() will resize the page. A lot of websites don't expect phones to change size, so you should set the viewport size before navigating to the page. page.set_viewport_size() will also reset screen size, use browser.new_context() with screen and viewport parameters if you need better control of these properties.

Usage

	Sync
	Async

page = browser.new_page()
page.set_viewport_size({"width": 640, "height": 480})
page.goto("https://example.com")

page = await browser.new_page()
await page.set_viewport_size({"width": 640, "height": 480})
await page.goto("https://example.com")

Arguments

	viewport_size Dict#
	
width int

page width in pixels.

	
height int

page height in pixels.

Returns

	NoneType#

title

Added in: v1.8
page.title
Returns the page's title.

Usage

page.title()

Returns

	str#

unroute

Added in: v1.8
page.unroute
Removes a route created with page.route(). When handler is not specified, removes all routes for the url.

Usage

page.unroute(url)
page.unroute(url, **kwargs)

Arguments

	
url str|Pattern|Callable[URL]:bool#

A glob pattern, regex pattern or predicate receiving URL to match while routing.

	
handler Callable[Route, Request]:Promise[Any]|Any (optional)#

Optional handler function to route the request.

Returns

	NoneType#

unroute_all

Added in: v1.41
page.unroute_all
Removes all routes created with page.route() and page.route_from_har().

Usage

page.unroute_all()
page.unroute_all(**kwargs)

Arguments

	
behavior "wait"|"ignoreErrors"|"default" (optional)#

Specifies wether to wait for already running handlers and what to do if they throw errors:

	'default' - do not wait for current handler calls (if any) to finish, if unrouted handler throws, it may result in unhandled error
	'wait' - wait for current handler calls (if any) to finish
	'ignoreErrors' - do not wait for current handler calls (if any) to finish, all errors thrown by the handlers after unrouting are silently caught

Returns

	NoneType#

wait_for_event

Added in: v1.8
page.wait_for_event
note
In most cases, you should use page.expect_event().

Waits for given event to fire. If predicate is provided, it passes event's value into the predicate function and waits for predicate(event) to return a truthy value. Will throw an error if the page is closed before the event is fired.

Usage

page.wait_for_event(event)
page.wait_for_event(event, **kwargs)

Arguments

	
event str#

Event name, same one typically passed into *.on(event).

	
predicate Callable (optional)#

Receives the event data and resolves to truthy value when the waiting should resolve.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout().

Returns

	Any#

wait_for_function

Added in: v1.8
page.wait_for_function
Returns when the expression returns a truthy value. It resolves to a JSHandle of the truthy value.

Usage

The page.wait_for_function() can be used to observe viewport size change:

	Sync
	Async

from playwright.sync_api import sync_playwright, Playwright

def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = webkit.launch()
 page = browser.new_page()
 page.evaluate("window.x = 0; setTimeout(() => { window.x = 100 }, 1000);")
 page.wait_for_function("() => window.x > 0")
 browser.close()

with sync_playwright() as playwright:
 run(playwright)

import asyncio
from playwright.async_api import async_playwright, Playwright

async def run(playwright: Playwright):
 webkit = playwright.webkit
 browser = await webkit.launch()
 page = await browser.new_page()
 await page.evaluate("window.x = 0; setTimeout(() => { window.x = 100 }, 1000);")
 await page.wait_for_function("() => window.x > 0")
 await browser.close()

async def main():
 async with async_playwright() as playwright:
 await run(playwright)
asyncio.run(main())

To pass an argument to the predicate of page.wait_for_function() function:

	Sync
	Async

selector = ".foo"
page.wait_for_function("selector => !!document.querySelector(selector)", selector)

selector = ".foo"
await page.wait_for_function("selector => !!document.querySelector(selector)", selector)

Arguments

	
expression str#

JavaScript expression to be evaluated in the browser context. If the expression evaluates to a function, the function is automatically invoked.

	
arg EvaluationArgument (optional)#

Optional argument to pass to expression.

	
polling float|"raf" (optional)#

If polling is 'raf', then expression is constantly executed in requestAnimationFrame callback. If polling is a number, then it is treated as an interval in milliseconds at which the function would be executed. Defaults to raf.

	
timeout float (optional)#

Maximum time to wait for in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	JSHandle#

wait_for_load_state

Added in: v1.8
page.wait_for_load_state
Returns when the required load state has been reached.

This resolves when the page reaches a required load state, load by default. The navigation must have been committed when this method is called. If current document has already reached the required state, resolves immediately.

Usage

	Sync
	Async

page.get_by_role("button").click() # click triggers navigation.
page.wait_for_load_state() # the promise resolves after "load" event.

await page.get_by_role("button").click() # click triggers navigation.
await page.wait_for_load_state() # the promise resolves after "load" event.

	Sync
	Async

with page.expect_popup() as page_info:
 page.get_by_role("button").click() # click triggers a popup.
popup = page_info.value
Wait for the "DOMContentLoaded" event.
popup.wait_for_load_state("domcontentloaded")
print(popup.title()) # popup is ready to use.

async with page.expect_popup() as page_info:
 await page.get_by_role("button").click() # click triggers a popup.
popup = await page_info.value
Wait for the "DOMContentLoaded" event.
await popup.wait_for_load_state("domcontentloaded")
print(await popup.title()) # popup is ready to use.

Arguments

	
state "load"|"domcontentloaded"|"networkidle" (optional)#

Optional load state to wait for, defaults to load. If the state has been already reached while loading current document, the method resolves immediately. Can be one of:

	'load' - wait for the load event to be fired.
	'domcontentloaded' - wait for the DOMContentLoaded event to be fired.
	'networkidle' - DISCOURAGED wait until there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

wait_for_url

Added in: v1.11
page.wait_for_url
Waits for the main frame to navigate to the given URL.

Usage

	Sync
	Async

page.click("a.delayed-navigation") # clicking the link will indirectly cause a navigation
page.wait_for_url("**/target.html")

await page.click("a.delayed-navigation") # clicking the link will indirectly cause a navigation
await page.wait_for_url("**/target.html")

Arguments

	
url str|Pattern|Callable[URL]:bool#

A glob pattern, regex pattern or predicate receiving URL to match while waiting for the navigation. Note that if the parameter is a string without wildcard characters, the method will wait for navigation to URL that is exactly equal to the string.

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	NoneType#

Properties

context

Added in: v1.8
page.context
Get the browser context that the page belongs to.

Usage

page.context

Returns

	BrowserContext#

frames

Added in: v1.8
page.frames
An array of all frames attached to the page.

Usage

page.frames

Returns

	List[Frame]#

is_closed

Added in: v1.8
page.is_closed
Indicates that the page has been closed.

Usage

page.is_closed()

Returns

	bool#

keyboard

Added in: v1.8
page.keyboard
Usage

page.keyboard

Type

	Keyboard

main_frame

Added in: v1.8
page.main_frame
The page's main frame. Page is guaranteed to have a main frame which persists during navigations.

Usage

page.main_frame

Returns

	Frame#

mouse

Added in: v1.8
page.mouse
Usage

page.mouse

Type

	Mouse

request

Added in: v1.16
page.request
API testing helper associated with this page. This method returns the same instance as browser_context.request on the page's context. See browser_context.request for more details.

Usage

page.request

Type

	APIRequestContext

touchscreen

Added in: v1.8
page.touchscreen
Usage

page.touchscreen

Type

	Touchscreen

url

Added in: v1.8
page.url
Usage

page.url

Returns

	str#

video

Added in: v1.8
page.video
Video object associated with this page.

Usage

page.video

Returns

	NoneType|Video#

viewport_size

Added in: v1.8
page.viewport_size
Usage

page.viewport_size

Returns

	NoneType|Dict#
	
width int

page width in pixels.

	
height int

page height in pixels.

workers

Added in: v1.8
page.workers
This method returns all of the dedicated WebWorkers associated with the page.

note
This does not contain ServiceWorkers

Usage

page.workers

Returns

	List[Worker]#

Events

on("close")

Added in: v1.8
page.on("close")
Emitted when the page closes.

Usage

page.on("close", handler)

Event data

	Page

on("console")

Added in: v1.8
page.on("console")
Emitted when JavaScript within the page calls one of console API methods, e.g. console.log or console.dir.

The arguments passed into console.log are available on the ConsoleMessage event handler argument.

Usage

	Sync
	Async

def print_args(msg):
 for arg in msg.args:
 print(arg.json_value())

page.on("console", print_args)
page.evaluate("console.log('hello', 5, { foo: 'bar' })")

async def print_args(msg):
 values = []
 for arg in msg.args:
 values.append(await arg.json_value())
 print(values)

page.on("console", print_args)
await page.evaluate("console.log('hello', 5, { foo: 'bar' })")

Event data

	ConsoleMessage

on("crash")

Added in: v1.8
page.on("crash")
Emitted when the page crashes. Browser pages might crash if they try to allocate too much memory. When the page crashes, ongoing and subsequent operations will throw.

The most common way to deal with crashes is to catch an exception:

	Sync
	Async

try:
 # crash might happen during a click.
 page.click("button")
 # or while waiting for an event.
 page.wait_for_event("popup")
except Error as e:
 pass
 # when the page crashes, exception message contains "crash".

try:
 # crash might happen during a click.
 await page.click("button")
 # or while waiting for an event.
 await page.wait_for_event("popup")
except Error as e:
 pass
 # when the page crashes, exception message contains "crash".

Usage

page.on("crash", handler)

Event data

	Page

on("dialog")

Added in: v1.8
page.on("dialog")
Emitted when a JavaScript dialog appears, such as alert, prompt, confirm or beforeunload. Listener must either dialog.accept() or dialog.dismiss() the dialog - otherwise the page will freeze waiting for the dialog, and actions like click will never finish.

Usage

page.on("dialog", lambda dialog: dialog.accept())

note
When no page.on("dialog") or browser_context.on("dialog") listeners are present, all dialogs are automatically dismissed.

Event data

	Dialog

on("domcontentloaded")

Added in: v1.9
page.on("domcontentloaded")
Emitted when the JavaScript DOMContentLoaded event is dispatched.

Usage

page.on("domcontentloaded", handler)

Event data

	Page

on("download")

Added in: v1.8
page.on("download")
Emitted when attachment download started. User can access basic file operations on downloaded content via the passed Download instance.

Usage

page.on("download", handler)

Event data

	Download

on("filechooser")

Added in: v1.9
page.on("filechooser")
Emitted when a file chooser is supposed to appear, such as after clicking the <input type=file>. Playwright can respond to it via setting the input files using file_chooser.set_files() that can be uploaded after that.

page.on("filechooser", lambda file_chooser: file_chooser.set_files("/tmp/myfile.pdf"))

Usage

page.on("filechooser", handler)

Event data

	FileChooser

on("frameattached")

Added in: v1.9
page.on("frameattached")
Emitted when a frame is attached.

Usage

page.on("frameattached", handler)

Event data

	Frame

on("framedetached")

Added in: v1.9
page.on("framedetached")
Emitted when a frame is detached.

Usage

page.on("framedetached", handler)

Event data

	Frame

on("framenavigated")

Added in: v1.9
page.on("framenavigated")
Emitted when a frame is navigated to a new url.

Usage

page.on("framenavigated", handler)

Event data

	Frame

on("load")

Added in: v1.8
page.on("load")
Emitted when the JavaScript load event is dispatched.

Usage

page.on("load", handler)

Event data

	Page

on("pageerror")

Added in: v1.9
page.on("pageerror")
Emitted when an uncaught exception happens within the page.

	Sync
	Async

Log all uncaught errors to the terminal
page.on("pageerror", lambda exc: print(f"uncaught exception: {exc}"))

Navigate to a page with an exception.
page.goto("data:text/html,<script>throw new Error('test')</script>")

Log all uncaught errors to the terminal
page.on("pageerror", lambda exc: print(f"uncaught exception: {exc}"))

Navigate to a page with an exception.
await page.goto("data:text/html,<script>throw new Error('test')</script>")

Usage

page.on("pageerror", handler)

Event data

	Error

on("popup")

Added in: v1.8
page.on("popup")
Emitted when the page opens a new tab or window. This event is emitted in addition to the browser_context.on("page"), but only for popups relevant to this page.

The earliest moment that page is available is when it has navigated to the initial url. For example, when opening a popup with window.open('http://example.com'), this event will fire when the network request to "http://example.com" is done and its response has started loading in the popup.

	Sync
	Async

with page.expect_event("popup") as page_info:
 page.get_by_text("open the popup").click()
popup = page_info.value
print(popup.evaluate("location.href"))

async with page.expect_event("popup") as page_info:
 await page.get_by_text("open the popup").click()
popup = await page_info.value
print(await popup.evaluate("location.href"))

note
Use page.wait_for_load_state() to wait until the page gets to a particular state (you should not need it in most cases).

Usage

page.on("popup", handler)

Event data

	Page

on("request")

Added in: v1.8
page.on("request")
Emitted when a page issues a request. The request object is read-only. In order to intercept and mutate requests, see page.route() or browser_context.route().

Usage

page.on("request", handler)

Event data

	Request

on("requestfailed")

Added in: v1.9
page.on("requestfailed")
Emitted when a request fails, for example by timing out.

page.on("requestfailed", lambda request: print(request.url + " " + request.failure.error_text))

note
HTTP Error responses, such as 404 or 503, are still successful responses from HTTP standpoint, so request will complete with page.on("requestfinished") event and not with page.on("requestfailed"). A request will only be considered failed when the client cannot get an HTTP response from the server, e.g. due to network error net::ERR_FAILED.

Usage

page.on("requestfailed", handler)

Event data

	Request

on("requestfinished")

Added in: v1.9
page.on("requestfinished")
Emitted when a request finishes successfully after downloading the response body. For a successful response, the sequence of events is request, response and requestfinished.

Usage

page.on("requestfinished", handler)

Event data

	Request

on("response")

Added in: v1.8
page.on("response")
Emitted when response status and headers are received for a request. For a successful response, the sequence of events is request, response and requestfinished.

Usage

page.on("response", handler)

Event data

	Response

on("websocket")

Added in: v1.9
page.on("websocket")
Emitted when WebSocket request is sent.

Usage

page.on("websocket", handler)

Event data

	WebSocket

on("worker")

Added in: v1.8
page.on("worker")
Emitted when a dedicated WebWorker is spawned by the page.

Usage

page.on("worker", handler)

Event data

	Worker

Deprecated

accessibility

Added in: v1.8
page.accessibility
Deprecated
This property is discouraged. Please use other libraries such as Axe if you need to test page accessibility. See our Node.js guide for integration with Axe.

Usage

page.accessibility

Type

	Accessibility

check

Added in: v1.8
page.check
Discouraged
Use locator-based locator.check() instead. Read more about locators.

This method checks an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Ensure that matched element is a checkbox or a radio input. If not, this method throws. If the element is already checked, this method returns immediately.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.mouse to click in the center of the element.
	Wait for initiated navigations to either succeed or fail, unless no_wait_after option is set.
	Ensure that the element is now checked. If not, this method throws.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

Usage

page.check(selector)
page.check(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional) Added in: v1.11#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional) Added in: v1.11#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

click

Added in: v1.8
page.click
Discouraged
Use locator-based locator.click() instead. Read more about locators.

This method clicks an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.mouse to click in the center of the element, or the specified position.
	Wait for initiated navigations to either succeed or fail, unless no_wait_after option is set.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

Usage

page.click(selector)
page.click(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
button "left"|"right"|"middle" (optional)#

Defaults to left.

	
click_count int (optional)#

defaults to 1. See UIEvent.detail.

	
delay float (optional)#

Time to wait between mousedown and mouseup in milliseconds. Defaults to 0.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
modifiers List["Alt"|"Control"|"Meta"|"Shift"] (optional)#

Modifier keys to press. Ensures that only these modifiers are pressed during the operation, and then restores current modifiers back. If not specified, currently pressed modifiers are used.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional)#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional) Added in: v1.11#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

dblclick

Added in: v1.8
page.dblclick
Discouraged
Use locator-based locator.dblclick() instead. Read more about locators.

This method double clicks an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.mouse to double click in the center of the element, or the specified position.
	Wait for initiated navigations to either succeed or fail, unless no_wait_after option is set. Note that if the first click of the dblclick() triggers a navigation event, this method will throw.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

note
page.dblclick() dispatches two click events and a single dblclick event.

Usage

page.dblclick(selector)
page.dblclick(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
button "left"|"right"|"middle" (optional)#

Defaults to left.

	
delay float (optional)#

Time to wait between mousedown and mouseup in milliseconds. Defaults to 0.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
modifiers List["Alt"|"Control"|"Meta"|"Shift"] (optional)#

Modifier keys to press. Ensures that only these modifiers are pressed during the operation, and then restores current modifiers back. If not specified, currently pressed modifiers are used.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional)#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional) Added in: v1.11#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

dispatch_event

Added in: v1.8
page.dispatch_event
Discouraged
Use locator-based locator.dispatch_event() instead. Read more about locators.

The snippet below dispatches the click event on the element. Regardless of the visibility state of the element, click is dispatched. This is equivalent to calling element.click().

Usage

	Sync
	Async

page.dispatch_event("button#submit", "click")

await page.dispatch_event("button#submit", "click")

Under the hood, it creates an instance of an event based on the given type, initializes it with event_init properties and dispatches it on the element. Events are composed, cancelable and bubble by default.

Since event_init is event-specific, please refer to the events documentation for the lists of initial properties:

	DeviceMotionEvent
	DeviceOrientationEvent
	DragEvent
	Event
	FocusEvent
	KeyboardEvent
	MouseEvent
	PointerEvent
	TouchEvent
	WheelEvent

You can also specify JSHandle as the property value if you want live objects to be passed into the event:

	Sync
	Async

note you can only create data_transfer in chromium and firefox
data_transfer = page.evaluate_handle("new DataTransfer()")
page.dispatch_event("#source", "dragstart", { "dataTransfer": data_transfer })

note you can only create data_transfer in chromium and firefox
data_transfer = await page.evaluate_handle("new DataTransfer()")
await page.dispatch_event("#source", "dragstart", { "dataTransfer": data_transfer })

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
type str#

DOM event type: "click", "dragstart", etc.

	
event_init EvaluationArgument (optional)#

Optional event-specific initialization properties.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

eval_on_selector

Added in: v1.9
page.eval_on_selector
Discouraged
This method does not wait for the element to pass actionability checks and therefore can lead to the flaky tests. Use locator.evaluate(), other Locator helper methods or web-first assertions instead.

The method finds an element matching the specified selector within the page and passes it as a first argument to expression. If no elements match the selector, the method throws an error. Returns the value of expression.

If expression returns a Promise, then page.eval_on_selector() would wait for the promise to resolve and return its value.

Usage

	Sync
	Async

search_value = page.eval_on_selector("#search", "el => el.value")
preload_href = page.eval_on_selector("link[rel=preload]", "el => el.href")
html = page.eval_on_selector(".main-container", "(e, suffix) => e.outer_html + suffix", "hello")

search_value = await page.eval_on_selector("#search", "el => el.value")
preload_href = await page.eval_on_selector("link[rel=preload]", "el => el.href")
html = await page.eval_on_selector(".main-container", "(e, suffix) => e.outer_html + suffix", "hello")

Arguments

	
selector str#

A selector to query for.

	
expression str#

JavaScript expression to be evaluated in the browser context. If the expression evaluates to a function, the function is automatically invoked.

	
arg EvaluationArgument (optional)#

Optional argument to pass to expression.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

Returns

	Serializable#

eval_on_selector_all

Added in: v1.9
page.eval_on_selector_all
Discouraged
In most cases, locator.evaluate_all(), other Locator helper methods and web-first assertions do a better job.

The method finds all elements matching the specified selector within the page and passes an array of matched elements as a first argument to expression. Returns the result of expression invocation.

If expression returns a Promise, then page.eval_on_selector_all() would wait for the promise to resolve and return its value.

Usage

	Sync
	Async

div_counts = page.eval_on_selector_all("div", "(divs, min) => divs.length >= min", 10)

div_counts = await page.eval_on_selector_all("div", "(divs, min) => divs.length >= min", 10)

Arguments

	
selector str#

A selector to query for.

	
expression str#

JavaScript expression to be evaluated in the browser context. If the expression evaluates to a function, the function is automatically invoked.

	
arg EvaluationArgument (optional)#

Optional argument to pass to expression.

Returns

	Serializable#

expect_navigation

Added in: v1.8
page.expect_navigation
Deprecated
This method is inherently racy, please use page.wait_for_url() instead.

Waits for the main frame navigation and returns the main resource response. In case of multiple redirects, the navigation will resolve with the response of the last redirect. In case of navigation to a different anchor or navigation due to History API usage, the navigation will resolve with null.

Usage

This resolves when the page navigates to a new URL or reloads. It is useful for when you run code which will indirectly cause the page to navigate. e.g. The click target has an onclick handler that triggers navigation from a setTimeout. Consider this example:

	Sync
	Async

with page.expect_navigation():
 # This action triggers the navigation after a timeout.
 page.get_by_text("Navigate after timeout").click()
Resolves after navigation has finished

async with page.expect_navigation():
 # This action triggers the navigation after a timeout.
 await page.get_by_text("Navigate after timeout").click()
Resolves after navigation has finished

note
Usage of the History API to change the URL is considered a navigation.

Arguments

	
timeout float (optional)#

Maximum operation time in milliseconds, defaults to 30 seconds, pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_navigation_timeout(), browser_context.set_default_timeout(), page.set_default_navigation_timeout() or page.set_default_timeout() methods.

	
url str|Pattern|Callable[URL]:bool (optional)#

A glob pattern, regex pattern or predicate receiving URL to match while waiting for the navigation. Note that if the parameter is a string without wildcard characters, the method will wait for navigation to URL that is exactly equal to the string.

	
wait_until "load"|"domcontentloaded"|"networkidle"|"commit" (optional)#

When to consider operation succeeded, defaults to load. Events can be either:

	'domcontentloaded' - consider operation to be finished when the DOMContentLoaded event is fired.
	'load' - consider operation to be finished when the load event is fired.
	'networkidle' - DISCOURAGED consider operation to be finished when there are no network connections for at least 500 ms. Don't use this method for testing, rely on web assertions to assess readiness instead.
	'commit' - consider operation to be finished when network response is received and the document started loading.

Returns

	EventContextManager[Response]#

fill

Added in: v1.8
page.fill
Discouraged
Use locator-based locator.fill() instead. Read more about locators.

This method waits for an element matching selector, waits for actionability checks, focuses the element, fills it and triggers an input event after filling. Note that you can pass an empty string to clear the input field.

If the target element is not an <input>, <textarea> or [contenteditable] element, this method throws an error. However, if the element is inside the <label> element that has an associated control, the control will be filled instead.

To send fine-grained keyboard events, use locator.press_sequentially().

Usage

page.fill(selector, value)
page.fill(selector, value, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
value str#

Value to fill for the <input>, <textarea> or [contenteditable] element.

	
force bool (optional) Added in: v1.13#

Whether to bypass the actionability checks. Defaults to false.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

focus

Added in: v1.8
page.focus
Discouraged
Use locator-based locator.focus() instead. Read more about locators.

This method fetches an element with selector and focuses it. If there's no element matching selector, the method waits until a matching element appears in the DOM.

Usage

page.focus(selector)
page.focus(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

get_attribute

Added in: v1.8
page.get_attribute
Discouraged
Use locator-based locator.get_attribute() instead. Read more about locators.

Returns element attribute value.

Usage

page.get_attribute(selector, name)
page.get_attribute(selector, name, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
name str#

Attribute name to get the value for.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType|str#

hover

Added in: v1.8
page.hover
Discouraged
Use locator-based locator.hover() instead. Read more about locators.

This method hovers over an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.mouse to hover over the center of the element, or the specified position.
	Wait for initiated navigations to either succeed or fail, unless noWaitAfter option is set.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

Usage

page.hover(selector)
page.hover(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
modifiers List["Alt"|"Control"|"Meta"|"Shift"] (optional)#

Modifier keys to press. Ensures that only these modifiers are pressed during the operation, and then restores current modifiers back. If not specified, currently pressed modifiers are used.

	
no_wait_after bool (optional) Added in: v1.28#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional)#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional) Added in: v1.11#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

inner_html

Added in: v1.8
page.inner_html
Discouraged
Use locator-based locator.inner_html() instead. Read more about locators.

Returns element.innerHTML.

Usage

page.inner_html(selector)
page.inner_html(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	str#

inner_text

Added in: v1.8
page.inner_text
Discouraged
Use locator-based locator.inner_text() instead. Read more about locators.

Returns element.innerText.

Usage

page.inner_text(selector)
page.inner_text(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	str#

input_value

Added in: v1.13
page.input_value
Discouraged
Use locator-based locator.input_value() instead. Read more about locators.

Returns input.value for the selected <input> or <textarea> or <select> element.

Throws for non-input elements. However, if the element is inside the <label> element that has an associated control, returns the value of the control.

Usage

page.input_value(selector)
page.input_value(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	str#

is_checked

Added in: v1.8
page.is_checked
Discouraged
Use locator-based locator.is_checked() instead. Read more about locators.

Returns whether the element is checked. Throws if the element is not a checkbox or radio input.

Usage

page.is_checked(selector)
page.is_checked(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	bool#

is_disabled

Added in: v1.8
page.is_disabled
Discouraged
Use locator-based locator.is_disabled() instead. Read more about locators.

Returns whether the element is disabled, the opposite of enabled.

Usage

page.is_disabled(selector)
page.is_disabled(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	bool#

is_editable

Added in: v1.8
page.is_editable
Discouraged
Use locator-based locator.is_editable() instead. Read more about locators.

Returns whether the element is editable.

Usage

page.is_editable(selector)
page.is_editable(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	bool#

is_enabled

Added in: v1.8
page.is_enabled
Discouraged
Use locator-based locator.is_enabled() instead. Read more about locators.

Returns whether the element is enabled.

Usage

page.is_enabled(selector)
page.is_enabled(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	bool#

is_hidden

Added in: v1.8
page.is_hidden
Discouraged
Use locator-based locator.is_hidden() instead. Read more about locators.

Returns whether the element is hidden, the opposite of visible. selector that does not match any elements is considered hidden.

Usage

page.is_hidden(selector)
page.is_hidden(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

:::caution Deprecated
This option is ignored. page.is_hidden() does not wait for the element to become hidden and returns immediately.
:::

Returns

	bool#

is_visible

Added in: v1.8
page.is_visible
Discouraged
Use locator-based locator.is_visible() instead. Read more about locators.

Returns whether the element is visible. selector that does not match any elements is considered not visible.

Usage

page.is_visible(selector)
page.is_visible(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

:::caution Deprecated
This option is ignored. page.is_visible() does not wait for the element to become visible and returns immediately.
:::

Returns

	bool#

press

Added in: v1.8
page.press
Discouraged
Use locator-based locator.press() instead. Read more about locators.

Focuses the element, and then uses keyboard.down() and keyboard.up().

key can specify the intended keyboardEvent.key value or a single character to generate the text for. A superset of the key values can be found here. Examples of the keys are:

F1 - F12, Digit0- Digit9, KeyA- KeyZ, Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape, ArrowDown, End, Enter, Home, Insert, PageDown, PageUp, ArrowRight, ArrowUp, etc.

Following modification shortcuts are also supported: Shift, Control, Alt, Meta, ShiftLeft.

Holding down Shift will type the text that corresponds to the key in the upper case.

If key is a single character, it is case-sensitive, so the values a and A will generate different respective texts.

Shortcuts such as key: "Control+o", key: "Control++ or key: "Control+Shift+T" are supported as well. When specified with the modifier, modifier is pressed and being held while the subsequent key is being pressed.

Usage

	Sync
	Async

page = browser.new_page()
page.goto("https://keycode.info")
page.press("body", "A")
page.screenshot(path="a.png")
page.press("body", "ArrowLeft")
page.screenshot(path="arrow_left.png")
page.press("body", "Shift+O")
page.screenshot(path="o.png")
browser.close()

page = await browser.new_page()
await page.goto("https://keycode.info")
await page.press("body", "A")
await page.screenshot(path="a.png")
await page.press("body", "ArrowLeft")
await page.screenshot(path="arrow_left.png")
await page.press("body", "Shift+O")
await page.screenshot(path="o.png")
await browser.close()

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
key str#

Name of the key to press or a character to generate, such as ArrowLeft or a.

	
delay float (optional)#

Time to wait between keydown and keyup in milliseconds. Defaults to 0.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

query_selector

Added in: v1.9
page.query_selector
Discouraged
Use locator-based page.locator() instead. Read more about locators.

The method finds an element matching the specified selector within the page. If no elements match the selector, the return value resolves to null. To wait for an element on the page, use locator.wait_for().

Usage

page.query_selector(selector)
page.query_selector(selector, **kwargs)

Arguments

	
selector str#

A selector to query for.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

Returns

	NoneType|ElementHandle#

query_selector_all

Added in: v1.9
page.query_selector_all
Discouraged
Use locator-based page.locator() instead. Read more about locators.

The method finds all elements matching the specified selector within the page. If no elements match the selector, the return value resolves to [].

Usage

page.query_selector_all(selector)

Arguments

	
selector str#

A selector to query for.

Returns

	List[ElementHandle]#

select_option

Added in: v1.8
page.select_option
Discouraged
Use locator-based locator.select_option() instead. Read more about locators.

This method waits for an element matching selector, waits for actionability checks, waits until all specified options are present in the <select> element and selects these options.

If the target element is not a <select> element, this method throws an error. However, if the element is inside the <label> element that has an associated control, the control will be used instead.

Returns the array of option values that have been successfully selected.

Triggers a change and input event once all the provided options have been selected.

Usage

	Sync
	Async

Single selection matching the value or label
page.select_option("select#colors", "blue")
single selection matching both the label
page.select_option("select#colors", label="blue")
multiple selection
page.select_option("select#colors", value=["red", "green", "blue"])

Single selection matching the value or label
await page.select_option("select#colors", "blue")
single selection matching the label
await page.select_option("select#colors", label="blue")
multiple selection
await page.select_option("select#colors", value=["red", "green", "blue"])

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
force bool (optional) Added in: v1.13#

Whether to bypass the actionability checks. Defaults to false.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
element ElementHandle|List[ElementHandle] (optional)#

Option elements to select. Optional.

	
index int|List[int] (optional)#

Options to select by index. Optional.

	
value str|List[str] (optional)#

Options to select by value. If the <select> has the multiple attribute, all given options are selected, otherwise only the first option matching one of the passed options is selected. Optional.

	
label str|List[str] (optional)#

Options to select by label. If the <select> has the multiple attribute, all given options are selected, otherwise only the first option matching one of the passed options is selected. Optional.

Returns

	List[str]#

set_checked

Added in: v1.15
page.set_checked
Discouraged
Use locator-based locator.set_checked() instead. Read more about locators.

This method checks or unchecks an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Ensure that matched element is a checkbox or a radio input. If not, this method throws.
	If the element already has the right checked state, this method returns immediately.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.mouse to click in the center of the element.
	Wait for initiated navigations to either succeed or fail, unless no_wait_after option is set.
	Ensure that the element is now checked or unchecked. If not, this method throws.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

Usage

page.set_checked(selector, checked)
page.set_checked(selector, checked, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
checked bool#

Whether to check or uncheck the checkbox.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional)#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional)#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional)#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

set_input_files

Added in: v1.8
page.set_input_files
Discouraged
Use locator-based locator.set_input_files() instead. Read more about locators.

Sets the value of the file input to these file paths or files. If some of the filePaths are relative paths, then they are resolved relative to the current working directory. For empty array, clears the selected files.

This method expects selector to point to an input element. However, if the element is inside the <label> element that has an associated control, targets the control instead.

Usage

page.set_input_files(selector, files)
page.set_input_files(selector, files, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
files Union[str, pathlib.Path]|List[Union[str, pathlib.Path]]|Dict|List[Dict]#

	
name str

File name

	
mimeType str

File type

	
buffer bytes

File content

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

tap

Added in: v1.8
page.tap
Discouraged
Use locator-based locator.tap() instead. Read more about locators.

This method taps an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.touchscreen to tap the center of the element, or the specified position.
	Wait for initiated navigations to either succeed or fail, unless no_wait_after option is set.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

note
page.tap() the method will throw if has_touch option of the browser context is false.

Usage

page.tap(selector)
page.tap(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
modifiers List["Alt"|"Control"|"Meta"|"Shift"] (optional)#

Modifier keys to press. Ensures that only these modifiers are pressed during the operation, and then restores current modifiers back. If not specified, currently pressed modifiers are used.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional)#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional) Added in: v1.11#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

text_content

Added in: v1.8
page.text_content
Discouraged
Use locator-based locator.text_content() instead. Read more about locators.

Returns element.textContent.

Usage

page.text_content(selector)
page.text_content(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType|str#

type

Added in: v1.8
page.type
Deprecated
In most cases, you should use locator.fill() instead. You only need to press keys one by one if there is special keyboard handling on the page - in this case use locator.press_sequentially().

Sends a keydown, keypress/input, and keyup event for each character in the text. page.type can be used to send fine-grained keyboard events. To fill values in form fields, use page.fill().

To press a special key, like Control or ArrowDown, use keyboard.press().

Usage

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
text str#

A text to type into a focused element.

	
delay float (optional)#

Time to wait between key presses in milliseconds. Defaults to 0.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType#

uncheck

Added in: v1.8
page.uncheck
Discouraged
Use locator-based locator.uncheck() instead. Read more about locators.

This method unchecks an element matching selector by performing the following steps:

	Find an element matching selector. If there is none, wait until a matching element is attached to the DOM.
	Ensure that matched element is a checkbox or a radio input. If not, this method throws. If the element is already unchecked, this method returns immediately.
	Wait for actionability checks on the matched element, unless force option is set. If the element is detached during the checks, the whole action is retried.
	Scroll the element into view if needed.
	Use page.mouse to click in the center of the element.
	Wait for initiated navigations to either succeed or fail, unless no_wait_after option is set.
	Ensure that the element is now unchecked. If not, this method throws.

When all steps combined have not finished during the specified timeout, this method throws a TimeoutError. Passing zero timeout disables this.

Usage

page.uncheck(selector)
page.uncheck(selector, **kwargs)

Arguments

	
selector str#

A selector to search for an element. If there are multiple elements satisfying the selector, the first will be used.

	
force bool (optional)#

Whether to bypass the actionability checks. Defaults to false.

	
no_wait_after bool (optional)#

Actions that initiate navigations are waiting for these navigations to happen and for pages to start loading. You can opt out of waiting via setting this flag. You would only need this option in the exceptional cases such as navigating to inaccessible pages. Defaults to false.

	
position Dict (optional) Added in: v1.11#

	
x float

	
y float

A point to use relative to the top-left corner of element padding box. If not specified, uses some visible point of the element.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

	
trial bool (optional) Added in: v1.11#

When set, this method only performs the actionability checks and skips the action. Defaults to false. Useful to wait until the element is ready for the action without performing it.

Returns

	NoneType#

wait_for_selector

Added in: v1.8
page.wait_for_selector
Discouraged
Use web assertions that assert visibility or a locator-based locator.wait_for() instead. Read more about locators.

Returns when element specified by selector satisfies state option. Returns null if waiting for hidden or detached.

note
Playwright automatically waits for element to be ready before performing an action. Using Locator objects and web-first assertions makes the code wait-for-selector-free.

Wait for the selector to satisfy state option (either appear/disappear from dom, or become visible/hidden). If at the moment of calling the method selector already satisfies the condition, the method will return immediately. If the selector doesn't satisfy the condition for the timeout milliseconds, the function will throw.

Usage

This method works across navigations:

	Sync
	Async

from playwright.sync_api import sync_playwright, Playwright

def run(playwright: Playwright):
 chromium = playwright.chromium
 browser = chromium.launch()
 page = browser.new_page()
 for current_url in ["https://google.com", "https://bbc.com"]:
 page.goto(current_url, wait_until="domcontentloaded")
 element = page.wait_for_selector("img")
 print("Loaded image: " + str(element.get_attribute("src")))
 browser.close()

with sync_playwright() as playwright:
 run(playwright)

import asyncio
from playwright.async_api import async_playwright, Playwright

async def run(playwright: Playwright):
 chromium = playwright.chromium
 browser = await chromium.launch()
 page = await browser.new_page()
 for current_url in ["https://google.com", "https://bbc.com"]:
 await page.goto(current_url, wait_until="domcontentloaded")
 element = await page.wait_for_selector("img")
 print("Loaded image: " + str(await element.get_attribute("src")))
 await browser.close()

async def main():
 async with async_playwright() as playwright:
 await run(playwright)
asyncio.run(main())

Arguments

	
selector str#

A selector to query for.

	
state "attached"|"detached"|"visible"|"hidden" (optional)#

Defaults to 'visible'. Can be either:

	'attached' - wait for element to be present in DOM.
	'detached' - wait for element to not be present in DOM.
	'visible' - wait for element to have non-empty bounding box and no visibility:hidden. Note that element without any content or with display:none has an empty bounding box and is not considered visible.
	'hidden' - wait for element to be either detached from DOM, or have an empty bounding box or visibility:hidden. This is opposite to the 'visible' option.

	
strict bool (optional) Added in: v1.14#

When true, the call requires selector to resolve to a single element. If given selector resolves to more than one element, the call throws an exception.

	
timeout float (optional)#

Maximum time in milliseconds. Defaults to 30000 (30 seconds). Pass 0 to disable timeout. The default value can be changed by using the browser_context.set_default_timeout() or page.set_default_timeout() methods.

Returns

	NoneType|ElementHandle#

wait_for_timeout

Added in: v1.8
page.wait_for_timeout
Discouraged
Never wait for timeout in production. Tests that wait for time are inherently flaky. Use Locator actions and web assertions that wait automatically.

Waits for the given timeout in milliseconds.

Note that page.waitForTimeout() should only be used for debugging. Tests using the timer in production are going to be flaky. Use signals such as network events, selectors becoming visible and others instead.

Usage

	Sync
	Async

wait for 1 second
page.wait_for_timeout(1000)

wait for 1 second
await page.wait_for_timeout(1000)

Arguments

	
timeout float#

A timeout to wait for

Returns

	NoneType#

Previous
Mouse
Next
Request
	Methods	add_init_script
	add_locator_handler
	add_script_tag
	add_style_tag
	bring_to_front
	close
	content
	drag_and_drop
	emulate_media
	evaluate
	evaluate_handle
	expect_console_message
	expect_download
	expect_event
	expect_file_chooser
	expect_popup
	expect_request
	expect_request_finished
	expect_response
	expect_websocket
	expect_worker
	expose_binding
	expose_function
	frame
	frame_locator
	get_by_alt_text
	get_by_label
	get_by_placeholder
	get_by_role
	get_by_test_id
	get_by_text
	get_by_title
	go_back
	go_forward
	goto
	locator
	opener
	pause
	pdf
	reload
	route
	route_from_har
	screenshot
	set_content
	set_default_navigation_timeout
	set_default_timeout
	set_extra_http_headers
	set_viewport_size
	title
	unroute
	unroute_all
	wait_for_event
	wait_for_function
	wait_for_load_state
	wait_for_url

	Properties	context
	frames
	is_closed
	keyboard
	main_frame
	mouse
	request
	touchscreen
	url
	video
	viewport_size
	workers

	Events	on("close")
	on("console")
	on("crash")
	on("dialog")
	on("domcontentloaded")
	on("download")
	on("filechooser")
	on("frameattached")
	on("framedetached")
	on("framenavigated")
	on("load")
	on("pageerror")
	on("popup")
	on("request")
	on("requestfailed")
	on("requestfinished")
	on("response")
	on("websocket")
	on("worker")

	Deprecated	accessibility
	check
	click
	dblclick
	dispatch_event
	eval_on_selector
	eval_on_selector_all
	expect_navigation
	fill
	focus
	get_attribute
	hover
	inner_html
	inner_text
	input_value
	is_checked
	is_disabled
	is_editable
	is_enabled
	is_hidden
	is_visible
	press
	query_selector
	query_selector_all
	select_option
	set_checked
	set_input_files
	tap
	text_content
	type
	uncheck
	wait_for_selector
	wait_for_timeout

Docs
	Getting started
	API reference

Community
	Stack Overflow
	Discord
	Twitter

More
	GitHub
	YouTube
	Blog

Copyright © 2024 Microsoft

